HelsenDin.Org

Hologic receives FDA approval for Cervista HTA system to detect cervical cancer

June 15, 2017

The most common mutation results in a single letter change in the DNA at a precise location in the U2AF1 gene. Patients with the genetic error were most likely to have the amino acids phenylalanine or tyrosine substituted for a serine. The researchers say that the mutation by itself does not cause myelodysplastic syndromes but appears to be an early event in the course of the disease.

Normally, the U2AF1 gene makes a protein involved in splicing RNA, a sister molecule of DNA that carries the instructions for building proteins. Splicing brings together different sections of RNA necessary to make a protein and discards those sections that are not needed. The mutated version of the gene still produces a protein, but its splicing activity is altered, which may be important for the development of some cancers.

The new research, funded in part by a federal stimulus grant, adds to a flurry of new findings about the genetic basis of myelodysplastic syndromes. Recent studies in Nature and the New England Journal of Medicine, along with the current study, have identified mutations in a total of eight genes involved in RNA splicing in patients with the disorder.

"Together, these findings are a real game-changer," Graubert says. "A mutation in any one of these eight genes occurs in up to 50 percent of patients with myelodysplastic syndromes. Because these changes are so common, we think there are likely to be implications for improving the diagnosis of the disorder and finding new therapeutic options."

Source: Washington University School of Medicine